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Abstract
A theory of formation of the voltage across a bipolar semiconductor sample due to the current
flow accounting for the energy band bending near the semiconductor surfaces is presented. The
non-equilibrium space charge layers near the sample surfaces and the boundary conditions in
the real metal–semiconductor junction have been taken into account. It is shown that the
voltage–current relation of a thin sample at weak injection differs essentially from the classical
Ohm’s law and becomes nonlinear for certain semiconductor surface parameters. Complex
voltage–current relations and the photo-induced electromotive force measurements allow
determining the surface recombination rate in the real metal–semiconductor junction and the
semiconductor surface potential.

1. Introduction

Charge-carrier transport lies as the basis of the electrical
behavior of any semiconductor device. Despite efforts
to correctly model transport in semiconductors over the
years, many questions remain open in the study of transport
phenomena. One of the questions is the electric current
flow through the metal–semiconductor junction (MSJ). The
linear carrier transport in a bipolar semiconductor sample,
through which a weak current flows, was studied in [1]. The
model of [1] assumes local electroneutrality in the bulk of
a semiconductor and is correct in the case of flat energy
bands. However, energy band bending usually occurs near
the MSJ [2]. It follows from the results of [3–7] that the
local electroneutrality approximation is insufficient for the
study of the problems related to the energy band bending
influence on the non-equilibrium carrier density distribution.
The current flow through a bipolar semiconductor sample is
one of these problems. It is shown in [3–5] that the non-
equilibrium space charge layer (SCL) arises at a distance
of several Debye lengths [3] from the real MSJ. This non-
equilibrium charge creates the so-called barrier electromotive
force (emf) [8], which can significantly change as well as the
Dember emf [3, 4], the thermo emf [6] and the Hall emf [5]
values. All these emf values have been calculated assuming a
small change of carrier density from equilibrium in the volume
of the sample and in the SCL. This condition essentially
limits the light intensity, the Lorenz force and the temperature
gradient when the surface potential [2] is negative. Note that
the usually used condition of weak photo-excitation assumes
a small variation of the electron density only in the volume

of the sample. In this case the system of continuity equations
becomes nonlinear [7] with respect to the SCL non-equilibrium
carrier density. Therefore, the voltage–current relation of the
sample can be nonlinear in the case of weak injection for
certain values of the semiconductor surface potential.

The aim of this paper is to study the role of the non-
equilibrium charge in the formation of the nonlinear voltage–
current relation of a bipolar semiconductor sample.

2. Theory

Let us consider a bipolar semiconductor plate −a � x � a.
Metallic contacts are placed on the surfaces x = ±a
of the sample. The electric current flows through the
semiconductor. We suppose that carrier injection is low, i.e. the
non-equilibrium carrier density is significantly less than the
equilibrium density in the bulk of the sample. The metallic
contacts of the sample have an ideal thermal contact with the
thermostat, whose temperature is T .

The non-equilibrium densities of electrons, δn, and holes,
δp, as well as the non-equilibrium electric potential, δϕ, are
obtained from solution of the continuity equations [3] and the
Poisson equation
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where −e is the electron charge, jn, jp are the electron and hole
current densities, τn(τp) is the parameter characterizing the
electron (hole) bulk recombination rate, ε is the semiconductor
electrical permittivity and ε0 is the vacuum permittivity. The
analytical expression of the recombination rate is obtained on
the basis of irreversible thermodynamics [9] and on the basis
of the Shockley–Read model [10].

In our case considered here the expressions for the x
component of partial currents take the form [2]

jn = −eμnn
dϕ

dx
+ μnkT

dn

dx

jp = −eμp p
dϕ

dx
− μpkT

dp

dx
,

(4)

where μn(μp) is the electron (hole) mobility, n(x), p(x) are
the density of electrons and holes accordingly, ϕ is the electric
potential, k is the Boltzmann constant and T is the temperature
of the semiconductor.

The boundary conditions (BCs) in the real MSJ are
obtained in [3, 11]

jn(±a) = j0 ∓ evpδp(±a), (5)

δn(±a) = 0, (6)

δϕM(±a) = δϕ(±a) ∓ j0/σ
S
n , (7)

where vp is the surface recombination rate (SRR), j0 is the
current density, σ S

n is the electron surface conductivity [3, 11]
and δϕM is the change of electric potential of metallic contact
caused by the current j0. For simplicity we assume that the
SRR values at the surfaces x = ±a coincide.

The BCs can be explained as follows: the non-
equilibrium electrons can cross the MSJ (the electron surface
conductivity [3] is large enough) and therefore do not
accumulate on the surfaces x = ±a. The non-equilibrium
holes accumulate and recombine on the surfaces x = ±a
because they do not cross the MSJ (there are no holes in
the metal). Note that the MSJ thickness is significantly less
than the Debye length in the model considered [11]. In the
local electroneutrality model the MSJ thickness is much more
than the Debye length because the BCs have been formulated
at a virtual surface which is formed at a distance of several
Debye lengths from the real MSJ [2, 8]. Two important
conclusions follow from this difference. Firstly, the parameter
vp characterizes the SRR in the real MSJ. Secondly, the
electron surface resistance [3, 11], which causes the electric
potential step across the MSJ, is small enough. Let us evaluate
the electron surface resistance of the unit surface square,
taking into account that the thickness of the real MSJ � is
significantly less than the Debye length rD:

(σ S
n )−1 = lim

ξ→0

∫ −a+ξ

−a−ξ

σ−1
n.eq dx

≈ �√
σMσn.eq(0)

� rDσ−1
n � aσ−1

n ,

where σn.eq is the equilibrium electron conductivity in the
MSJ, σM is the metal conductivity and σn is the equilibrium
electron conductivity in the bulk of the semiconductor. Thus

the electron surface resistance is negligible compared with the
bulk one. Therefore, we neglect below the electric potential
step across the MSJ. Note that in the local electroneutrality
model the surface resistance may be comparable with the bulk
one.

In most semiconductors the diffusion length λ signif-
icantly exceeds the Debye length rD. Under this condi-
tion the solution of equations (1)–(4) could be obtained as a
sum of three modes: the classical bulk mode, the diffusion–
recombination (DR) mode and the screening (S) mode. These
modes are denoted by subscripts C, R and S accordingly:

δn = δnR + δnS,

δp = δpR + δpS,

δϕ = ϕC + δϕR + δϕS.

(8)

The C and DR modes are obtained from the solution of
equations (1), (2) and (4), taking into account that λ is the
characteristic DR mode decay length, the classic bulk mode
is linear in the coordinate x , and the inequality λ � rD is
valid. Therefore, deducing these modes we can assume that
n = n0 + δnR, p = p0 + δpR and ϕ = ϕC + δϕR, where
n0 (p0) is the equilibrium density of electrons (holes) in the
bulk of the sample. It follows from equations (1) and (2) that

jn + jp = j0. (9)

On account of the physical symmetry of the problem we can
suppose the electric potential is equal to zero on the plane
x = 0. Therefore we derive from equations (4) and (9)

ϕC = − j0σ
−1x, (10)

δϕR = (μn − μp)kTσ−1δnR, (11)

jn = σn

σ
j0 + eD

dδnR

dx
, (12)

where σn = en0μn is the equilibrium electron conductivity,
σp = ep0μp is the equilibrium hole conductivity, σ = σn +σp

and D = (kT/eσ)(σnμp + σpμn) is the bipolar diffusion
coefficient.

The continuity equation for the DR mode one obtains from
equations (1), (2) and (12):

d2δnR

dx2
− δnR

λ2
= 0, (13)

where λ = √
Dτ is the diffusion length and τ = τnτp/(τn+τp)

is the lifetime of the electron–hole pairs in the bulk of the
sample. The non-equilibrium hole density δpR satisfies the
same equation.

On account of the BC (5) symmetry the solution of
equation (17) takes the form

δnR = δnR(a)
sinh(x/λ)

sinh(a/λ)
,

δpR = (1 − γ )δnR,

(14)

where γ = (μn − μp)
εε0kT
λ2eσ ∝ r2

D
λ2 � 1.
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The characteristic S mode decay length is the Debye
length rD and the characteristic DR mode decay length is the
diffusion length λ. On account of the inequality rD � λ we can
neglect the bulk recombination deriving the S mode. Therefore
the continuity equations (1) and (2) for the S mode take the
form

d jnS

dx
= 0,

d jpS

dx
= 0. (15)

The solution of equation (15) is

jnS = const = 0, jpS = const = 0, (16)

because the S mode is not equal to zero in a layer of several
rD distant from the surfaces x = ±a. Let us obtain the S
mode near the surface x = a, denoted as δn+

S , δp+
S and δϕ+

S .
The current flowing through the sample is assumed positive
( j0 > 0). It follows from equations (5), (12) and (14) at
negligible SRR (vp = 0) that δnR(a) = δn+

R > 0. Owing to
the inequality rD � λ the DR mode does not change in the S
mode existence region. Therefore we can consider the densities
ñ+ = neq + δn+

R and p̃+ = peq + δn+
R as the equilibrium

electron and hole densities of the S mode near the surface
x = a. In other words the electron and hole densities of the
S mode δn+

S and δp+
S are counted off from the levels ñ+ and

p̃+ accordingly. Here neq(peq) is the real equilibrium density
of electrons (holes).

Solving equations (4) and (16) we obtain the S mode near
the surface x = a:

δn+
S = (neq + δn+

R )

[
exp

(
eδϕ+

S

kT

)
− 1

]
,

δp+
S = (peq + δn+

R )

[
exp

(
− eδϕ+

S

kT

)
− 1

]
.

(17)

One deduces from equations (17) and (6):

δp+
S (a) = [p+

eq + δn+
R ]δn+

R

n+
eq

, (18)

δϕ+
S (a) = −kT

e
ln

[
1 + δn+

R

n+
eq

]
, (19)

where n+
eq = n0 exp(eϕS/kT ), p+

eq = p0 exp(−eϕS/kT ) and
ϕS is the surface potential (SP) [2].

The S mode near the surface x = −a (denoted as δn−
S ,

δp−
S and δϕ−

S ) is obtained in the same way as the electron and
hole densities of the S mode are counted off from the levels
ñ− = −(neq + δn+

R ) and p̃− = −(peq + δn+
R ) accordingly. We

derive from equations (4) and (16)

δn−
S = −δn+

S ,

δp−
S = −δp+

S ,

δϕ−
S = −δϕ+

S .

(20)

It follows from equation (19) that the S mode potential
δϕ+

S (a) dependence on the injection level is nonlinear at
negative SP. Taking into account equations (5), (12), (14)
and (18), we obtain at the condition ϕS < 0

δn+
R = λσp j0 tanh(a/λ)

eDσ [1 + Seff tanh(a/λ)] , (21)

where Seff = (vpτ/λ)[1 + p0 exp(−2eϕS/kT )/n0] is the
normalized effective SRR.

The voltage drop U across the semiconductor sample is
equal to

U = δϕM(−a) − δϕM(a) = −2δϕ(a). (22)

Finally we obtain from equations (10), (11) and (19), the
voltage–current relation (VCR) of the sample:

U = �ϕC + �ϕS + �ϕR, (23)

where
�ϕC = 2aj0σ

−1,

�ϕS = 2kT

e
ln

[
1 + δn+

R

n0
exp

(
− eϕS

kT

)]
,

�ϕR = −2kTσ−1(μn − μp)δn+
R .

3. Discussion of results

It follows from equation (23) that the voltage drop U consists
of several terms: the classic voltage drop across the bulk
resistance of the sample �ϕC and the emf �ϕS (�ϕR) created
by the S (DR) mode charge distribution. The formation of
the emf �ϕR (�ϕS) occurs in the following way. The flux
j0e−1 transfers the non-equilibrium carriers from the surface
x = −a to the surface x = a. The value of the DR
mode charge density is negative in the region 0 < x � a
because the electron mobility exceeds the mobility of holes
(see equation (14)). Therefore the electric potential of the DR
mode δϕR is positive in this region, i.e. it reduces the voltage
drop. Since the non-equilibrium electrons cross the MSJ and
the non-equilibrium holes accumulate near the surface x = a,
then the value of the S mode charge density is positive near this
surface. Therefore, the electric potential of the S mode δϕS(a)

is negative (see equation (19)), i.e. it increases the voltage drop.
On account of the solution property δϕ(−x) = −δϕ(x) the
non-equilibrium potential works in the same direction in the
region −a � x < 0, i.e. the DR mode decreases the voltage
drop value and the S mode increases it. Thus the barrier emf
�ϕS arises in the same direction as the current j0 flows. The
emf �ϕR works in the opposite direction (down in voltage).
As follows from equations (14) and (20) the redistribution of
carriers does not change the sample resistance because the
relations δn(−x) = −δn(x) and δp(−x) = −δp(x) are
valid. In the case of flat energy bands (ϕS = 0) equation (23)
coincides with that of [1]. However, the deviation from the
classical Ohm’s law is caused by the non-equilibrium charge,
not by the redistribution of carriers.

In the case of a large SRR value (vp � λ/τ) the VCR
is linear because only equilibrium carriers exist in the bulk
of the sample. In the case of a massive sample (a � λ)

the voltage drop U is caused in the main by the voltage
drop across the bulk resistance of the sample �ϕC and the
VCR is linear too. Therefore, consider the case of a not
massive sample (a � 0.5λ) the SRR value of which is small

3
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Figure 1. The VCR of the sample of Ge for some SP values:
1 − ϕS = −100 mV, 2 − ϕS = −120 mV and 3 − ϕS = −140 mV.
The dashed line gives the �ϕc value.

(vp � 0.1λ/τ). The analysis of equations (21) and (23)
shows that the voltage drop U has a maximum at the SP value
ϕS

m
∼= (kT/2e) ln[vpτp0 tanh(a/λ)/n0λ].
The VCR of a thin sample of pure Ge (T = 312 K,

λ = 0.1 cm, a = 0.002 cm, μn = 3800 cm2 V−1 s−1,
μp = 1800 cm2 V−1 s−1, vp = 20 cm s−1) for some SP
values is shown in figure 1. Curves 1 and 2 are calculated up
to the current density, at which the inequality δn+

R � 0.09n0

is fulfilled. It is seen from figure 1 that the voltage drop
across the sample for ϕS ∼= ϕS

m significantly exceeds the
classic one as the value obtained in [1]. Let us determine
the nonlinearity coefficient (NC) βN of the VCR by relation
βN( j0) = (U/R(0) j0)−1, where R( j0) = dU/d j0. The NC at
the current density j0 = 300 mA cm−2 is equal to βN = −0.55
(ϕS = −100 mV), βN = −0.48 (ϕS = −120 mV) and
βN = −0.38 (ϕS = −140 mV). The NC has a maximum
near the SP value ϕS

m. In the case considered here we have
ϕS

m = −100 mV.
The VCR of pure Ge (ϕS = −90 mV) for some sample

thickness is shown in figure 2. Curves 1–3 are calculated up
to the current density, at which the inequality δn+

R � 0.1n0 is
fulfilled. The NC at maximum possible current density is equal
to βN = −0.45 (curve 1, j0 = 112 mA cm−2), βN = −0.41
(curve 2, j0 = 96 mA cm−2) and βN = −0.32 (curve 3,
j0 = 87 mA cm−2).

The effect of both the voltage drop and the NC dependence
on the SP strongly manifests itself in thin samples at small
SRR values in the range of the SP (ϕS

m − 1.5kT/e) < ϕS <

(ϕS
m+1.5kT/e). Complex measurements of the VCR deviation

from Ohm’s law for the thin samples and the photo-induced
emf [3, 7] allow determination of the SRR in the real MSJ and
the semiconductor SP values. It is clear that the SP determined
has a maximum accuracy for small SRR values vp � 0.1λ/τ in
the range of the SP (ϕS

m − 1.5kT/e) < ϕS < (ϕS
m + 1.5kT/e).

The accuracy of the determination of the SRR and the SP
values decreases outside these ranges.

Note that the surface potential depends largely on the
surface levels, which form the surface energy bands in a

Figure 2. The VCR of Ge for some sample thickness:
1 − a = 0.01 cm, 2 − a = 0.02 cm, 3 − a = 0.05 cm.

3D crystal [12]. One can change the surface potential by
variation of the surface level density (before the formation
of the MSJ).

4. Conclusions

A theory of formation of the voltage across a bipolar
semiconductor sample due to the current flow accounting for
the energy band bending near the semiconductor surfaces has
been developed. It is shown that the VCR is nonlinear at
weak injection for thin samples and small enough surface
recombination rates in a certain range of the surface potential.
The space charge layers localized near the sample surfaces
cause the nonlinearity of the VCR. The measurements of the
VCR for the thin samples and the photo-induced emf allow
determination of the surface recombination rate in the real
metal–semiconductor junction and the semiconductor surface
potential. The approach developed may be successfully
used for theoretical study of any electromotive force in
semiconductor samples.
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